July 4, 2011
A new study shows that even when using very simple and inexpensive manufacturing methods - where flexible layers of material are deposited over large areas like cling film - efficient solar cell structures can be made.
The study, published in the journal Advanced Energy Materials, paves the way for new solar cell manufacturing techniques and the promise of developments in renewable solar energy. Scientists from the Universities of Sheffield and Cambridge used the ISIS Neutron Source and Diamond Light Source at STFC Rutherford Appleton Laboratory in Oxfordshire to carry out the research.
Plastic (polymer) solar cells are much cheaper to produce than conventional silicon solar cells and have the potential to be produced in large quantities. The study showed that when complex mixtures of molecules in solution are spread onto a surface, like varnishing a table-top, the different molecules separate to the top and bottom of the layer in a way that maximises the efficiency of the resulting solar cell.
Dr Andrew Parnell of the University of Sheffield, said: "Our results give important insights into how ultra-cheap solar energy panels for domestic and industrial use can be manufactured on a large scale. Rather than using complex and expensive fabrication methods to create a specific semiconductor nanostructure, high volume printing could be used to produce nano-scale (60 nano-meters) films of solar cells that are over a thousand times thinner than the width of a human hair. These films could then be used to make cost-effective, light and easily transportable plastic solar cell devices such as solar panels."
Dr Robert Dalgliesh, one of the ISIS scientists involved in the work, said: "This work clearly illustrates the importance of the combined use of neutron and X-ray scattering sources such as ISIS and Diamond in solving modern challenges for society. Using neutron beams at ISIS and Diamond´s bright X-rays, we were able to probe the internal structure and properties of the solar cell materials non-destructively. By studying the layers in the materials which convert sunlight into electricity, we are learning how different processing steps change the overall efficiency and affect the overall polymer solar cell performance."
To read more click here...
No comments:
Post a Comment