Lawrence Berkeley National Laboratory
May 8, 2011
As far back as the 1990s, long before anyone had actually isolated graphene – a honeycomb lattice of carbon just one atom thick – theorists were predicting extraordinary properties at the edges of graphene nanoribbons. Now physicists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), and their colleagues at the University of California at Berkeley, Stanford University, and other institutions, have made the first precise measurements of the “edge states” of well-ordered nanoribbons.
A graphene nanoribbon is a strip of graphene that may be only a few nanometers wide (a nanometer is a billionth of a meter). Theorists have envisioned that nanoribbons, depending on their width and the angle at which they are cut, would have unique electronic, magnetic, and optical features, including band gaps like those in semiconductors, which sheet graphene doesn’t have.
No comments:
Post a Comment