Feb 23, 2012
In the study, Dhiraj Prasai and colleagues point out that rusting and other corrosion of metals is a serious global problem, and intense efforts are underway to find new ways to slow or prevent it. Corrosion results from contact of the metal's surface with air, water or other substances. One major approach involves coating metals with materials that shield the metal surface, but currently used materials have limitations. The scientists decided to evaluate graphene as a new coating. Graphene is a single layer of carbon atoms, many layers of which are in lead pencils and charcoal, and is the thinnest, strongest known material. That's why it is called the miracle material. In graphene, the carbon atoms are arranged like a chicken-wire fence in a layer so thin that is transparent, and an ounce would cover 28 football fields.
They found that graphene, whether made directly on copper or nickel or transferred onto another metal, provides protection against corrosion. Copper coated by growing a single layer of graphene through chemical vapor deposition (CVD) corroded seven times slower than bare copper, and nickel coated by growing multiple layers of graphene corroded 20 times slower than bare nickel. Remarkably, a single layer of graphene provides the same corrosion protection as conventional organic coatings that are more than five times thicker. Graphene coatings could be ideal corrosion-inhibiting coatings in applications where a thin coating is favorable, such as microelectronic components (e.g., interconnects, aircraft components and implantable devices), say the scientists.
The researchers acknowledge funding from the National Science Foundation.
Source: American Chemical Society (ASC)
Additional Information:
- Graphene: Corrosion-Inhibiting Coating, ACS Nano, Article ASAP. DOI: 10.1021/nn203507y
No comments:
Post a Comment