Feb 17, 2012
An image of an ultra pure tellurium crystal. Credit: MIT News |
Nearly 13.7 billion years ago, the universe was made of only hydrogen, helium and traces of lithium — byproducts of the Big Bang. Some 300 million years later, the very first stars emerged, creating additional chemical elements throughout the universe. Since then, giant stellar explosions, or supernovas, have given rise to carbon, oxygen, iron and the rest of the 94 naturally occurring elements of the periodic table.
Today, stars and planetary bodies bear traces of these elements, having formed from the gas enriched by these supernovas over time. For the past 50 years, scientists have been analyzing stars of various ages, looking to chart the evolution of chemical elements in the universe and to identify the astrophysical phenomena that created them.
Now a team of researchers from institutions including MIT has detected the element tellurium for the first time in three ancient stars. The researchers found traces of this brittle, semiconducting alloy — which is very rare on Earth — in stars that are nearly 12 billion years old. The finding supports the theory that tellurium, along with even heavier elements in the periodic table, likely originated from a very rare type of supernova during a rapid process of nuclear fusion. The researchers published their findings online in Astrophysical Journal Letters.
“We want to understand the evolution of tellurium — and by extension any other element — from the Big Bang to today,” says Anna Frebel, an assistant professor of astrophysics at MIT and a co-author on the paper. “Here on Earth, everything’s made from carbon and various other elements, and we want to understand how tellurium on Earth came about.”
To read more click here...
No comments:
Post a Comment