May 17, 2011
Such highly coveted technical capabilities as the observation of single catalytic processes in nanoreactors, or the optical detection of low concentrations of biochemical agents and gases are an important step closer to fruition. Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with researchers at the University of Stuttgart in Germany, report the first experimental demonstration of antenna-enhanced gas sensing at the single particle level. By placing a palladium nanoparticle on the focusing tip of a gold nanoantenna, they were able to clearly detect changes in the palladium’s optical properties upon exposure to hydrogen.
“We have demonstrated resonant antenna-enhanced single-particle hydrogen sensing in the visible region and presented a fabrication approach to the positioning of a single palladium nanoparticle in the nanofocus of a gold nanoantenna,” says Paul Alivisatos, Berkeley Lab’s director and the leader of this research. “Our concept provides a general blueprint for amplifying plasmonic sensing signals at the single-particle level and should pave the road for the optical observation of chemical reactions and catalytic activities in nanoreactors, and for local biosensing.”
“We have demonstrated resonant antenna-enhanced single-particle hydrogen sensing in the visible region and presented a fabrication approach to the positioning of a single palladium nanoparticle in the nanofocus of a gold nanoantenna,” says Paul Alivisatos, Berkeley Lab’s director and the leader of this research. “Our concept provides a general blueprint for amplifying plasmonic sensing signals at the single-particle level and should pave the road for the optical observation of chemical reactions and catalytic activities in nanoreactors, and for local biosensing.”
No comments:
Post a Comment