July 20, 2011
The concept all begins with a granular system comprising a chain of equal-sized particles -- spheres, for instance -- that touch one another.
In a paper in Physical Review E this June, UB theoretical physicist Surajit Sen and colleagues describe how altering the shape of grain-to-grain contact areas between the particles dramatically changes how energy propagates through the system.
Under "normal" circumstances, when the particles are perfect spheres, exerting force on the first sphere in the chain causes energy to travel through the spheres as a compact bundle of energy between 3 to 5 particle diameters wide, at a rate set by Hertz's Law.
To read more click here...
No comments:
Post a Comment