U.S. Department of Energy’s Brookhaven National Laboratory
July 25, 2011
Researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have observed a new way that magnetic and electric properties — which have a long history of ignoring and counteracting each other — can coexist in a special class of metals. These materials, known as multiferroics, could serve as the basis for the next generation of faster and energy-efficient logic, memory, and sensing technology.
The researchers, who worked with colleagues at the Leibniz Institute for Solid State and Materials Research in Germany, published their findings online in Physical Review Letters on July 25, 2011. Ferromagnets are materials that display a permanent magnetic moment, or magnetic direction, similar to how a compass needle always points north. They assist in a variety of daily tasks, from sticking a reminder to the fridge door to storing information on a computer’s hard drive.
Ferroelectrics are materials that display a permanent electric polarization — a set direction of charge — and respond to the application of an electric field by switching this direction. They are commonly used in applications like sonar, medical imaging, and sensors.
“In principle, the coupling of an ordered magnetic material with an ordered electric material could lead to very useful devices,” said Brookhaven physicist Stuart Wilkins, one of the paper’s authors. “For instance, one could imagine a device in which information is written by application of an electric field and read by detecting its magnetic state. This would make a faster and much more energy-efficient data storage device than is available today.”
To read more click here...
Monday, July 25, 2011
Rare Coupling of Magnetic and Electric Properties in a Single Material
Labels:
Energy,
Materials,
Research and Development
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment