Vanderbilt University
Aug 17, 2011
A new lower-limb prosthetic developed at Vanderbilt University allows amputees to walk without the leg-dragging gait characteristic of conventional artificial legs.
The device uses the latest advances in computer, sensor, electric motor and battery technology to give it bionic capabilities: It is the first prosthetic with powered knee and ankle joints that operate in unison. It comes equipped with sensors that monitor its user’s motion. It has microprocessors programmed to use this data to predict what the person is trying to do and operate the device in ways that facilitate these movements.
“When it’s working, it’s totally different from my current prosthetic,” said Craig Hutto, the 23-year-old amputee who has been testing the leg for several years. “A passive leg is always a step behind me. The Vanderbilt leg is only a split-second behind.”
The bionic leg is the result of a seven-year research effort at the Vanderbilt Center for Intelligent Mechatronics, directed by Michael Goldfarb, the H. Fort Flowers Professor of Mechanical Engineering. The project was initially funded by a seed grant from the National Science Foundation, followed by a development grant from the National Institutes of Health. Key aspects of the design have been patented by the university, which has granted exclusive rights to develop the prosthesis to Freedom Innovations, a leading developer and manufacturer of lower limb prosthetic devices.
To read more click here...
Thursday, August 18, 2011
New ‘bionic’ leg gives amputees a natural gait
Labels:
Education,
Medical,
Research and Development,
Technology
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment